
Accelerator Physics 

(with solutions

1. (10 pts) Consider the following FODO cell

 

a. Write the transfer matrix for this cell

 

(4 pts) The order of operation is from right to left, so the transfer matrix is the product of 

(drift 2L drift)(thin lens 
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Accelerator Physics Exam  

(with solutions-52 pts total) 

Consider the following FODO cell 

Write the transfer matrix for this cell, assuming the particles are moving from left to right.

The order of operation is from right to left, so the transfer matrix is the product of 

2L drift)(thin lens –f)(drift L)(thin lens f) 
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, assuming the particles are moving from left to right. 

The order of operation is from right to left, so the transfer matrix is the product of  



b. If a ring is made out of these FODO cells, 

only as an inequality between 

Note, there might be more than one

inequality which is both physical and non

 

(2 pts) The condition for stabi

than or equal to 2 

 

 

c. Assuming this condition is 

orbit would look like. 

 

(2 pts) The maximum stable condition represents a phase advance of 

will move from a positive to a negative position at each cell.  This is much like the limiting 

case of the simple FODO cell, except it will not pass through the center of t

lens, so there will be a slight defocusing.
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a ring is made out of these FODO cells, express the condition for stable orbits

as an inequality between L and f; that is  or  , where C is a constant.  

more than one mathematical solution; be sure to specify a single 

inequality which is both physical and non-trivial. 

The condition for stability is that the absolute value of the trace of the matrix be less 

 

Assuming this condition is just met, sketch 3 cells and sketch approximately what a stable 

 

The maximum stable condition represents a phase advance of π, so the limiting orbit 

will move from a positive to a negative position at each cell.  This is much like the limiting 

case of the simple FODO cell, except it will not pass through the center of the defocusing 

lens, so there will be a slight defocusing. 
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express the condition for stable orbits in this plane 

is a constant.  

; be sure to specify a single 

lity is that the absolute value of the trace of the matrix be less 

, sketch 3 cells and sketch approximately what a stable 

, so the limiting orbit 

will move from a positive to a negative position at each cell.  This is much like the limiting 

he defocusing 

 



d. Now write the transfer matrix for the other plane (hint: this should be trivial at this point).  

Under the conditions described in (c), will motion be stable in this plane as well? 

 

(2 pts) In the other plane, this cell has the focusing and defocusing lenses exchanged, which 

is the equivalent of simply changing the sign of f 

 

The trace of this matrix is the same as in the other plane, which means the stability condition 

will also be the same, so yes, motion will be stable in this plane as well. 

 

 

2. (10 pts) A synchrotron consists of 28 identical cells. In the vertical plane, each cell has a phase 

advance of 62 degrees. The maximum beta function in each cell is 20 m, and the minimum is 10 m. 

a. What is the tune of the machine? 

 

(2 pts) If µ is the phase advance is in each cell, then 

� � ��2� � �28	�62	�360	 � 4.82 

 

b. I wish to extract the beam by placing a kicker dipole in one cell and an extraction septum at 

the same location in the next.  Would I choose the maximum or minimum beta points for 

this? 

 

(2 pts) The equation relating the lateral deviation to an angular deflection is �� � ������� sin�����	 

If  the kicker and septum are in the same places in their respective cells, then the two beta 

functions will be the same, and clearly I will get the maximum lateral deflection for a 

particular angular bend by choosing the maximum beta point in each cell. 

 c. Assuming I made the correct choice, what angular deflection would be required at the kicker 

to move the beam vertically by 4 cm at the location of the septum? 

 

(2 pts) If both the bend dipole and the septum are at the maximum beta point in each cell, 

then �� � ������ sin��	 
⇒�� � �. 04	�20	sin�62	 
� .0023 � 2.3 mrad � .13°  
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d. If this is a 5 GeV electron beam, and the kicker is 1 m long, what magnetic field would be 

required to accomplish this? 

 

(4 pts) Since this beam is very relativistic, %& ' (, and the beam stiffness is 

�)*	 � 5. 3 
The bend angle of a dipole is approximately 

� ' ),�)*	 

So we calculate the required field with 

) � ���)*	,  
� �. 0023	�16.7	�1	  
� .038 T 

 

3. (14 pts) A proton beam is coasting (ie, not accelerating) in a synchrotron with the following 

parameters 

• Kinetic Energy: 100 GeV 

• Circumference: 5 km 

• Harmonic of the RF System: 500 

• Available RF voltage: 1 MV 

• Transition gamma (/0): 25 

Answer the following questions (assume Δ(, Δ2, and 34 are all defined in terms of the RMS values of 

the distributions): 

 

a. Calculate the period 5 of the machine and the frequency (678) of the RF system. 

 

(2 pts) We’re going to need to know the energy and the relativistic γ and β for this beam. (9 � : ; <&� � 100.938 GeV 
/ � (9<&� � 100.938 . 938 � 107.6 
� � �1 A 1//� � .9999 ' 1 

The period is then 

5 � C�& � �5000	�1	�3 D 10E	 � 16.7 �sec 

and the RF frequency is  

678 � F5 � �500	16.7 D 10GH � 30 MHz 

  



b. Calculate the slip factor (L) for this machine. 

 

(2 pts) The slip factor is given by 

L � 1/0� A 1/� � 125� A 1107.6� 
� .0015 

 

c. What is the synchrotron tune (�9) 

 

(2 pts) The equation for the synchrotron tune is 

�9 � 12� MA NO�P785L(9�� cosR9 

Since the machine is not accelerating, we know that sinR9 � 0 

For motion to be harmonic, the product of the cosine and the slip factor must be negative. 

Since we’re above transition, the slip factor is positive, so R9 � �, and the tune is (keeping 

eV0 and Es in units of GeV) 
�9 � 12� M�. 001	�2� D 30 D 10H	�16.7 D 10GH	�. 0015	�100.938	  
� .0011 

 

d. What is the longitudinal beta (�4) function (including units!)? 

 

(2 pts) This is given by 

�4 � 5|L|2�(9���9 � �16.7 D 10GH	�. 0015	2��100.938 D 10T	�. 0011	 
� 3.64 D 10G�U s A eVG� � 36.5 ns A GeVG� 

 

  



e. What is the maximum bucket height (ΔΕW) in eV which can be stored? 

 

(2 pts) The equation for the maximum bucket height is 

∆(W � 2 Y1 A Z�2 A R9[ tanR9
P78�4  

for R9 � �, this becomes 

∆(W � 2P78�4 
� 2�2� D 30 D 10H	�3.64 D 10G�U	 
� 2.91 D 10E eV � 291 MeV 

 

f. Assuming that the bunch is matched, if the actual energy distribution (Δ() is 1/5 of the 

maximum: 

I. What is the longitudinal emittance (34) in eV-s? 

 

(2 pts) The emittance is related to the energy distribution by 34 � �4�∆(	� 
� �3.64 D 10G�U	 ]2.91 D 10E

5 ^� 
� .124 eV A s 

 

II. What is the time distribution (Δ2) in s 

 

(2 pts) The time distribution is related to the longitudinal emittance by ∆2 � ��434 
� ��3.64 D 10G�U	�. 124	 � 2.1 D 10GT s � 2.1 ns 

 

Alternatively, you could use  ∆2 � �4∆( 
� �4 ∆(W5  
� �3.64 D 10G�U	 ]2.91 D 10E

5 ^ 
� 2.1 ns 

 



 

 

4. (10 pts) Recall from Homework  4 

Machine Particle type Circumference Bend radius of 

magnets 

Beam Current Energy 

LEP  Electrons 27 km 3.5 km 5 mA 45 GeV 

Tevatron Protons 6.28 km 780 m 75 mA 1 TeV 

 

When the Tevatron was shutting down, some people considered using the tunnel for a “giga-Z” factory:  

an electron-positron collider running on the _� resonance (45 GeV/beam), but having 100 times the 

luminosity of LEP.  We’ll call it “Giga”.  Assume the following: 

• Giga would be built in the Tevatron tunnel (ie, have the same circumference), and the new 

magnets would each have the same bend radius as the present Tevatron. 

• The luminosity of LEP was limited by the beam-beam tune shift, and Giga would have the same 

maximum tune shift parameter and number of interaction points as LEP.  

• All the lattice parameters at the collision point of Giga would be the same as LEP. 

• You can assume that in each machine, the electron and positron beams are completely 

symmetric, in terms of beam and bunch size. 

• Each machine is separated function and isomagnetic (all bend magnets have the same field). 

Please answer the following: 

a. What would be the required magnetic field for Giga, in Tesla? 

 

(2 pts) The required magnetic field is just given by the beam stiffness over the desired bend 

radius 

)� � �)*	*�  
� Z45. 3[780  
� .192 T 

 

 

 

  



b. What beam current would be required at Giga to achieve the 100 fold increase in 

luminosity? 

 

(2 pts) The luminosity of a collider is 

` � 6abcdW�W�/4��e3f ghbi� 

We know that the tune shift of the collider is proportional to the “brightness” (�W/3f	 (an 

explicit formula was given in lecture 14). We can therefore break this out (as we did when 

discussing the LHC luminosity), and we see. 
` � �6abcdW�W	/4��e3f j�W3fk ghbi� 

So if the tune shift is the limit, and – as we specified - everything else about the machines is 

the same, then the luminosity will just depend on the product �6abcdW�W	, which is simply 

the beam current over the charge. Therefore, to increase the luminosity by 100, we would 

need to increase the beam current by 100, to 500 mA 

 

c. What does this correspond to for the product of the number of bunches and bunch size �dW�W	 in Giga? 

 

(2 pts) The current is given by m � N6abcdW�W 

so 

�dW�W	 � mN6abc � mN C& 
� �. 5	�6280	�1.6 D 10G�T	�3 D 10E	 
� 6.5 D 10�n 

 

  



d. What would be the energy lost per particle per turn (in GeV) to synchrotron radiation in 

Giga
1
? 

 

(2 pts) We derived the expression for energy loss/turn in the lecture on synchrotron 

radiation, but it’s pretty easy to reproduce.  For a particle being bent with a radius of 

curvature ρ, the radiated power is  

o � 16�3�
N�&/p

*�  

q9 � r os2 � 1&
t

� u osv 
� N�/p

6�3� u 1*� sv 

 

But in a separated function, isomagnetic lattice, ρ is either ρ0 or infinity, so we can write  
q9 � N�/p

6�3�
1*� u 1* sv 

� N�/p
6�3�

1*� �2�	 
� N�/p

3*�3� 

 

(which we could have just copied from page 3 of the synchrotron radiation lecture), so  
q9 � �1.6 D 10G�T	� Z45000. 511 [p

3�780	�8.85 D 10G��	  
� 7.43 D 10G�� J � .465 GeV   

 

  

                                                           
1
 If this turns out to be greater than the particle energy, it might still be OK, assuming we are continuously re-

accelerating the particles between magnets. 



e. What would be total power loss (in Watts) for each beam in Giga? 

 

(2 pts) The power loss will be given by the energy loss per turn per particle multiplied by the 

total number of particles times the revolution frequency oxi99 � �6abcdW�W	q9 
� &C �dW�W	q9 
� �3 D 10E	6280 �6.5 D 10�n	�7.43 D 10G��	 
� .23 GW 

 

Of course we could save a step by realizing that the first equation is equivalent to   
oxi99 � mN q9 
� �. 5 A	N �. 465 GeV	 
� .23 GW 

This means that the total RF power required would be about half a GigaWatt.  Since RF 

cavities aren’t particularly efficient, this means that such a machine would require need 

roughly a dedicated power plant just to compensate for synchrotron power loss. 

 

5. (8 pts) An attempt is made to independently adjust the horizontal and vertical tunes in a 10 GeV 

(kinetic energy) proton synchrotron. It’s found that the minimum tune separation that can be 

achieved is .02, due to coupling.  Assume this is caused by a single, normal quadrupole which has 

been slightly rotated. 

a. What is the value for the normalized coupling coefficient? 
z { Y���|}~ � Y���| )����)*	 

 
(2 pts) In the coupled oscillation lecture, we found that for a machine with uncoupled tunes �� and �|, the presence of linear coupling would give rise to measured tunes 

��,� � �� � 14� �z� ; 4�����	� 

where �� { �������� , �� { ��| A ���, and z is the normalized coupling as described above.  

The minimum separation in the measured tunes will come when the nominal tunes are equal �� � �| � �� �  �� � 0, and the observed tunes will be 
��,� � �� � z4� 

which are separated by 
���.  Therefore, the normalized coupling which would give rise to the 

minimum tune separation observed would be z � 2��∆�	��� � 2��. 02	 � .126 

 



 

b. If the quadrupole in question is 1 m long and has a gradient of 1 T/m, located at a point 

where ��= 50m �|=20m, what angular rotation (magnitude, in degrees) would cause this 

much coupling? 

 

(6 pts) We can convert from the normalized coupling term above to the real skew sextupole 

term with 
�)� ��� � z �)*	

����| 

We’ll need to know the stiffness of the beam, so we calculate the momentum with 

% � 1& ��: ; <&�	� A �<&�	� 
� ��10.938	� A �. 938	� 
� 10.9 GeVc  

 
� �)*	 � 10.9. 3 � 36.3 T A m 

 

so the required integrated skew field will be  
�)� ��� � z �)*	

����| 
� �. 126	 �36.3	

��50	�20	 
� .144 T 

You proved in the homework, that a normal quadrupole which has been rotated by φ will 

have a  skew term given by )� � � )�sin2R � )� �� � )��sin2R so the rotation needed to produce the skew field calculated above would be 
R � 12 sinG� ])� ��)��^ 
� 12 sinG� j . 144�1	�1	k 
� .072 rad � 4.1°   

 


